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The application of a time-filtering algorithm to particle simulations including low-fregueney 
electron dynamics with time steps At satisfying the condition w,, At % 1, where wpe denotes 
the electron plasma frequency, is presented. The implicit determination of the electric field 
required in these simulations is achieved by using the continuity and momentum equations in 
conjunction with the Poisson equation in a manner guaranteeing numerical stability for Long 
wavelengths satisfying the condition kmaxvthe At + 1, where k,,, is the largest wave number 
included in the computations and vthe is the electron thermal velocity. Several c!assical 
examples, invoiving two-stream instabilities, ion-acoustic oscillations and plasma expansion 
into vacuum are given, and the effects of aliases and of beaming instabilities are analyzed. 

I. INTRODUCTION 

The study of plasmas of interest in either nuclear fusion or space pbysi~s requires 
the consideration of phenomena varying on widely diffjerent time scales. In inertial 
confinement fusion, for example, parametric instabilities near the critical density 
oscillate at a frequency close to the laser frequency -3 x 10” Hz (neodymium-amass 
Iaser), and electron plasma frequencies in the dense plasma are an order of magnitude 
higher. The orbits of electrons heated to a few kilo-electron volts have characteristic 
frequencies uthe/L - 10” Hz, where uthe is the electron thermal speed and L - E 
is the density gradient length, while the rarefaction wave propagating into the pi 
has a characteristic frequency c,/R - 10’ Hz, where c, is the ion sound speed and 
R - 100,~m is the target radius. Similarly, in magnetically confined plasmas, the 
electron plasma frequency for a density of 1Ol4 particles per cubic centimete 
10’” Hz, ion gyrofrequencies for magnetic fields -5 T are in the range -107--IO8 
microinstabilities are characterized by the electron bounce frequencies vbe - 106 Hz, 
and drift frequencies v*, w  10’ Hz. Finally transport effects are ch~acterized by 
collision frequencies ranging from lo4 to lo* Hz. Although space plasmas have much 
lower densities and magnetic fields, they have much longer gradient lengths, res~~ti~~ 
in time scales also ranging over six or seven orders of magnitude. 
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These widely different time scales impose serious limitations on numerical 
simulation of plasmas, which can usually span only a range of approximately three 
orders of magnitude in time scales (corresponding, for example, to a maximum of lo5 
time steps). This problem of time scales, and the related problem of spatial scales, is 
one of the factors contributing to the division of computational studies into “particle 
simulations” where all the relevant physics can usually be included, “MHD” where 
electron inertia is neglected, and “transport” in which both electron and ion inertia 
are neglected and the plasma evolves through a series of equilibria due to collisional 
or diffusive effects. Particle simulations, of course, also involve a more complete 
kinetic representation of the plasma than MHD. 

This division of time scales, based on neglecting electron inertia, for example, 
becomes inadequate when low-frequency electron inertia effects, such as trapping 
oscillations, influence the evolution of phenomena varying at the ion time scale. In 
such cases, electron inertia must be retained but the resulting high-frequency 
oscillations require the use of much shorter time steps, and often contribute 
undesirable noise. For example, the retention of electron inertia in particle 
simulations of ion-acoustic phenomena, which vary with characteristic frequencies 
kc, = kAg(mJmi)1J2Upe> requires time steps satisfying the condition upe At < 1, and 
become prohibitive in the case of long wavelenghts corresponding to kl, < 1. Here 
upe denotes the electron plasma frequency, 1, is the Debye length, m, and m, are the 
electron and ion masses, respectively. Similar limitations occur in computational 
studies of long-wavelength drift or Alfven waves. High-frequency oscillations may be 
viewed as the analogue in time of the fine spatial scale microfields, associated with 
particle discreteness in particle simulations. These fine scale microfields are effec- 
tively eliminated, while retaining the large-scale collective effects, by the spatial 
averaging process which results from the use of spatial grids with mesh size Ax - 1, 
and of particles with finite size a - A,. This suggests that a similar averaging 
procedure, in time rather than in space, could “filter out” high-frequency electron 
oscillations to permit time steps with w,, At 9 1, while not affecting low-frequency 
ion motion, or low-frequency electron motions associated with resonant interaction 
and trapping. 

A time-filtering algorithm of this type has been applied previously to a linearized 
solution of Vlasov and drift-kinetic equations using a polynomial expansion method 
in velocity space [I]. In this paper the same algorithm is now applied to more general 
(non-linear) particle simulations, operating directly in x, v space in much the same 
manner as “usual” particle simulation techniques [2]. 

A particle simulation is expressible as a set of A4 first-order differential equations 
in time. After linearization, the matrix of these equations can, in principle, be 
diagonalized to obtain a set of decoupled equations of the form 

where f, (m = l,..., M) denotes the appropriate set of characteristic functions and the 
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0,‘s are the corresponding characteristic frequencies. A time averaging algor~tbm 
may be applied to Eq. (1) by writing 

t+At f, -fit 
At 

= -iw, go A,f;2m+(1--n’At, 

where the superscripts denote time values and N-t 1 such values are used in the 
averaging operation, with weights A, satisfying the normalization ~ond~t~~~ 
CtzO A, = 1. Note that, unlike spatial averaging used to. eliminate noisy short 
wavelengths, this time averaging generally cannot be centered, since future values of 
f, are unknown. Indeed such time centering would not be desirable here since it 
would not yield the desired damping of high frequencies. However, it appears that 
any averaging procedure involving only past values t’ < t (i.e., rz > 1) is doomed by 
numerical instabilities, and the present value, t’ = t + At (i.e., y1= 0) is iuc~ude~ in 
Eq. (2), making the algorithm implicit. 

To achieve the desired time filtering, the averaging must satisfy the following con- 
ditions: 

(1) unconditional numerical stability, regardless of the value of o, At; 

(2) damping of high frequencies, corresponding to o, At s 1; and 

(3) damping approaching zero for low frequencies, corrsponding to o, At 4 1, 

The number N of past time values involved in Eq. (2) is limited by ~orn~~te~ 
memory requirement. For N = 1, predictor-corrector algorithms (with or without 
damping) are obtained, but as shown in Appendix A, these algorithms do not meet 
satisfactorily both conditions (2) and (3). An averaging procedure for IV= 2, 
obtained by setting A,, = i, A, = 0, A, = $, was given in Ref. [I]. This choice satisfies 
all three conditions, and for O, At < 1, the damping rate, y, vanishes according to 
y/w,,, - (w, At)3. H owever, 
A,=$-, Al=&, 

this choice is not unique and, for example, the weights 
A, = & yield the same behavior of y/am at low frequencies, while 

giving a larger damping rate in the high-frequency limit, see Appendix A. 
Applying the a, i algorithm to Eq. (2) gives 

fi+Af -&f; = 
At 

-iw, 

and assuming a time dependence of the form fk w  exp(-iwt) yields 

where < = exp(-io At) =fk+“f/‘A denotes the amplification factor. This is a 
quadratic equation for <, which can easily be solved to give the damping rate 
y = -Im w  and frequency, Re w, as a function of w, At. The resulting frequency and 
damping rate are given in Fig. 1, together with the frequency and damping rate 

581/d-2/2-9 
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FIG. 1. Normalized frequency, p/w,, and damping rate, y/urn, 
algorithmswithA,=~,;A,=~,;A,=~andA,=$P,=O,A,=a. 

corresponding to time-averaging 

obtained from the -&, s, & algorithm. Note that in the high-frequency limit 
w, dt + co, the first term in Eq. (4) vanishes, giving < = i/G. In this limit, each 
magnitude off, is smaller than the preceding magnitude by a factor l/G, while the 
phase rotates 90” at each time step. In the low-frequency limit, w, dt + 0, Eq. (4) 
yields <- 1 N -io, At, from which w  N o, and y -+ 0. Thus this algorithm satisfies 
the required conditions to achieve time filtering. 

This time-filtering algorithm is implicit as noted earlier, and cannot be solved by 
simply iterating the term fzAf in the right member of Eq. (3), because such an 
iteration would diverge for w, At $ 1. In the polynomial expansion method of 
Ref. [ 11, it was possible to solve the implicit time step by inverting a band sub-matrix 
containing the dominant matrix elements, while iterating the remaining terms. 
However, particle simulations, or numerical solutions of the Vlasov equation 
operating directly in velocity space, are better suited than the polynomial expension 
solutions to represent non-equilibrium distribution functions involving resonant and 
trapped particles. A method to solve the implicit time step in such “direct” Vlasov 
solutions, using the electron continuity and momentum equations, was briefly 
outlined in the conclusion of Ref. [I]. This method is applied here to the particle 
simulation case. A similar method of implicit determination of the electric field has 
also been developed independently by Mason [3], and methods of this type are 
expected to find significant future applications. 

In this method, the densities and mean velocities are determined at the new time 
step by inverting the matrix of the continuity and momentum equations, coupled with 
the Poisson equation. The pressure tensor which is needed in the momentum equation 
is determined from the particles, or from the distribution function. Since the pressure 
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enters into the momentum equation through its gradient, it may be iterated in a 
rapidly convergent manner if kmax~the At < 1, where k,,, is the maximu 
number retained in the computations and uthe is the electron thermal velocity. 
condition, which was recognized by Langdon [4] in the early stages of develop 
of these algorithms, means that an electron must not move more than a fraction of 
the shortest wavelength during the time step At. Since the compatibility of the 
conditions wP, At % 1 and kmaxvthe At g I requires k,,, &, 6 I, where ;io is the Debye 
length, the present methods are applicable only to long-wavele~g~ phenomena. 

Related time-filtering methods have been developed, using orbit averaging in 
particle simulations of magnetized plasmas, by Cohen et a!. [5]. In these simulations, 
long time steps are used in advancing time-averaged fields, while the particles are 
advanced along their orbits using time steps satisfying the condition CO, At Q 1, where 
W, is the cyclotron frequency. The primary aim of these methods is to reduce the 
noise due to field fluctuations allowing the observation of new physical ~be~ornc~~~ 
which would otherwise require a much larger number of simulation particles. 

The time-filtering algorithm is applied to particle advancing in Section II. The 
implicit determination of the electric field, using the continuity and rn~rne~t~rn 
equations, is presented in Section III. Examples of ,applicatio~s are iven in 
Section IV. These include two-stream instabilities, ion-acoustic waves and the 
expansion of a finite plasma slab into vacuum. Some generalizations, such as the 
treatment of short-wavelength (k N A;‘) ion-acoustic fluctuations, and a~plicatio~s of 
time-altering techniques to fluid and transport codes are discussed in Section V. 
Several mathematical analyses of the algorithm are presented in the A~~end~c~s: 
stability and accuracy in Appendix A, dispersion relation with finite Ax and iljit in 
Appendix B, and ion beaming instability in Appendix C. 

Throughout the paper, and in the code used to generate the numerical exarn~I~s~ 
the weights A, = %, A 1 = 0, A, = 4 have been used to provide specific r~s~lt$. 
However, the concepts used are applicable to arbitrary weights, and the formulas 
derived in the paper may easily be generalized to other choices. 

II. PARTICLE-ADVANCING ALGORITHM 

Consider a one-dimensional particle simulation and assume that the electric field is 
known, at times t -At, t and t + At, on a spatial grid with mesh size Ax. The implicit 
determination of the field at t + At is considered in Section III. Applying the $, $ 
algorithm to the equations of motion of a particle gives 

x tiAt -2 3 Ut+At 1 
At =?- 

+ 4 vt-, 

t+At($+At) + +.t-At(xt-At) 
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where x denotes position, v is the velocity, q is the particle charge and m is its mass. 
Assume that the electric field is defined through its values, Ej = E(jAx), and through 
the values of its derivative, EJ. = (dE/d~),,~~~, at the grid points. Let Z’+Af = 
xf + zi’ At denote the free-streaming position of the particle at t + At, and letj denote 
the grid point closest to ?+At; then 

E’++f+A’) ,~j+At + @t+At -j,,)Ejt+At, (7) 

Substituting this expression into the right memer of Eq. (6) and solving Eqs. (5) and 
(6) simultaneously for xf+At and v~+‘~ yields 

3At At 
X -v, +-vt-At ) 

4 4 1 
V , (9) 

where d = 1 - (q/m)(3 At/4)2Ejr+At and 

For a locally constant (and uniform) electric field, E, the distance separating the 
actual and free-streaming positions is 6.x = x’+~’ - 5?+” = (q/2m) E At*. Therefore, 
the grid point estimate used in Eq. (7) is valid for k8x 6 1, where k denotes the wave 
number of the electric field, or (qkE/m) At* 4 1. This condition may be conveniently 
expressed as wT At e 1, where cur = (qkE/m)“’ denotes the trapping frequency. Since 
Ed= aE/~X(x=jAx N kE, the condition o, At < 1 also implies d > 0 and guarantees 
that Eqs. (8) and (9) are non-singular. 

III. IMPLICIT ELECTRIC FIELD COMPUTATION 

Since the electric field at t + At must be known prior to advancing the particles, the 
present algorithm is implicit. Furthermore, the positions and velocities cannot be 
solved by iterations of Eqs. (8) and (9), after re-evaluating the electric field using the 
Poisson equation alone. For the cold plasma case it is easily shown that such an 
iteration would diverge when mpe At > j, i.e., precisely for the large time step cases 
of interest here. For a thermal plasma the convergence condition is even more 
restrictive. However, the divergence of the iteration for wp, At ;L 1 is caused by 
electron inertia, and a convergent solution can be obtained by treating inertia effects 
separately in terms of the continuity and momentum equations, while iterating only 
the smaller terms of order kvfhs At, where vlhs is the thermal velocity of the species, 
s. 1 

’ A solution of the finite-difference equations by direct elimination has also been achieved since the 
submittal of this paper for publication. See [6]. 
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consider the continuity and momentum equations for the various species s 
(electrons and ions) written in the form 

al2,- 
at - -v . (n,u,j, 

f (n,u,) = 2 n,E - V . I’,. 
s 

(ik) 

Here nt, = J” S, dv is the particle density, up = i 9(fS/n,) h is the drift velocity and 
PgD = J ~%~j’~ dv is the second moment tensor off,, where a, j3 denote rectangular 
coordinate directions (x, y or z), fS(r, v, t) is the distribution function for species s, la, 
is the particle charge and m, is its mass. When coupled with the Poisson equation, 
Eqs. (10) and (11) become an exact set of equations for n,, u, and E, provided that 
the kinetic term F, = -V . P, is known. This kinetic term includes the convective 
derivative term n,(u, . V)u, and the pressure gradient term, which is approximated in 
fluid treatments by considering additional moments and truncating. In the particle 
simulations considered here, the kinetic term F, is evaluated eactiy in terms of the 
particles. Equations (10) and (1 l), which include electron inertia, are solved 
implicitly with a first approximation of F:‘At, to obtain E?+*‘. The particles are then 
advanced and the second moment tensor P, is recomputed to yield an improved 
approximation of F, “A’ Since this term is of order kvths At < 1: this iterative process . 
converges rapidly in the case of long wavelength, M, < 1. 

In the 1D electrostatic case, Eq. (10) and the Poisson equation reduce to 

f = 4ne(n,u, - PZit4i)y 

where singly ionized ions and no net current through the system are assumed. 
Introducing dimensionless variables as defined in Table I, and applying the {, 4 
algorithm to Eqs. (11) and (12) yields 

Et”“t=Ef + 3 At 
4 (I1,U, - ni,i)*+*’ + A~ (Iz,U,- MiUi)t-At, 

TABLE I 

Units Used for Code Normalization 

Length: L (length of system) 
Time: age’ (inverse of electron plasma frequency) 

Velocity: -WT. 
Density: n, (unperturbed density) 

Electric field: h-/e&& 
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where 6, = -1 and 6i = me/m,. Substituting Eq. (13) with s = e and s = i into 
Eq. (14) and solving for I?‘Af gives the kid predictor 

+ ’ (F,-F,)ftAt-~ [ (n,+~ni) E-F,+~i]‘-dij ,(15) 
I 

where D = 1 t (3 ~It/4)~[n, -I- (me/m,)ni]f+Af. 
A diagram of the complete time step is given in Fig. 2. First approximations to 

II,, u, and F, at t + At needed to start the iteration are provided by values at the 
previous time t. Only a few iterations are usually required to obtain convergence and 
the time step can often be used without iteration. The electric field is corrected using 
the Poisson equation at the end of the time step to eliminate possible error build-up in 
the application of Eq. (15). 

The convergence of the iteration is now examined for finite At, but assuming that 
f,,& and E are continuous variables with respect to x, i.e., considering the limit 
dx+ 0. A stability analysis of the time step, with both At and Ax finite, is given in 
Appendix B. Applying the i, 4 algorithm to the linearized, Fourier transformed 
Vlasov equation for species s gives 

f:k+Af -J;~=+ (ik&+$Ek$)t+At 
s 

At %I, -- 4 ikvfs,, + &Ei x 
t-At 

3 
s 

where subscripts k denote Fourier transformed variables andf,,(v) is the equilibrium 
distribution function of species s. From this equation, the correction to fstkAt resulting 
from a correction SI?z to E:+At at the @h iteration is 

“‘=- 
3At 4s -- %lsl~v *E”q 

4 m, 1 +.QikvAt k’ 

FIG. 2. Diagram 
advancing algorithm. 

of time step, including the implicit electric field computation and the particle- 
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The corresponding correction to the kinetic term F’,iA” is 

where an even function f,, is considered, and kvths At 4 1 is assumed in the approx- 
imation. The field correction CL!?“p,+’ resulting from 6Fz, and 8Fy:, at the (s t l)th 
iteration, given by Eq. (15) is 

and substituting L$zk and @‘yk from Eq. (16) into this equation yields 

(kvthe At)’ + 3 (kv,,, At) 
1 

The iteration converges if / &?~” / < j &??;I. For At s 1 (i.e., w,, dt B Z in physical 
units) and WZ, < mi, Eq. (17) gives convergence for kvthe dt 5 0.7. 

This convergence condition and the condition o,dr < 1 required for the particle- 
advancing algorithm impose an upper limit to the wave number k. This ~~per-~i~i~ 
condition could be guaranteed by choosing a sufficiently large mesh size, satisfying 
the condition Ax > vthe At. However, in the examples considered here, the ~~pe~-~irni~ 
condition on k is maintained by spatial filtering, carried out by fast Fourier 
transforms. This allows arbitrarily small mesh sizes to provide a fine resolutin of ah 
modes retained in the computations, and to study the effect of the mesh size on 
aliasing instabilities. 

IV. EXAMPLES 

The results of computer simulations done with a one-dimensional code 
implementing the present method with A, = $, A, = 0 and A, = i are presented in this 
section. Three types of problems involving (A) instabilities with cold electron 
beams, (B) ion-acoustic waves and instabilities in hot plasmas and (C) expansion of a 
plasma slab into vacuum, are considered. 

A. Pnstabilities with Cold Electron and Ion Beams 

Two cases are considered here. In the first case, two electron beams of neg~i~~~Ie 
velocity spread travel in opposite directions iv, and the ions are statio~~~y~ A 
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system of length L is assumed, and the spectrum is limited to a single mode of wave 
number k = 2z/L. The dispersion relation is 

1 1 2 
(co - ku,)’ + (o + ku,)* = i$? 

where o is the complex frequency, mpe = (87te2n,/m,)1~2 is the plasma frequency and 
nb is the density of each beam. Unstable modes occur for [ k( ( cop,/ub and the most 
unstable, corresponding to k = (i)““oPJvb, has a growth rate ymax = ceP,/2 fi. For 
such a large growth rate (of order wP,) the present method would require a time step 
At N 0.1 y,,‘, N 0.30,‘, and would not present any particular advantage over 
classical methods. Let us consider instead a long-wavelength perturbation 
corresponding to kv,/w,, = 1.96 X lo-’ < 1, obtained by setting nb = 3.125 X 
lO-3Lo,,. For this case, Eq. (18) yields four modes: two stable modes with 
frequencies *cc)~~ and two zero-frequency modes with growth rates kkv,, the mode 
corresponding to y = kv, being unstable. The present method has been applied to this 
case with Ax = L/32, At = 50;~’ and 1088 particles. One iteration, i.e., one predictor 
followed by a single corrector, was used at each time step. The beams are driven for 
two time steps by an external pump field and the resulting evolution of the kinetic 
energy perturbation as a function of time is given in Fig. 3. There is an initial tran- 
sient for t ( 500&‘, after which the computation follows the unstable zero-frequency 
mode with a growth rate y = 1.84 x IO-*W~~ close to the theoretical growth rate 
y= 1.96 x IO-‘@ . The growth saturates when the electric field reaches an 
amplitude E, = b-4meLco$/e which corresponds to a trapping frequency 
e+ = 2.5 1 x IO-‘W~~ of the same order as the growth rate. Note that in the present 
case, the conditions w,At = 1.25 x 10-r < 1 and kv, At = 10-l Q 1 are satisfied. 

0 

FIG. 3. Electron kinetic energy perturbation as a function of time for a simulation of the electron 
two-stream instability with kvb,/6>pe = 1.96 x lo-‘, At = 50;’ and Ax = L/32. All figures are labeled in 
terms of normalized units defined in Table I. 
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X X 

FIG. 4. Phase plots corresponding to the example of Fig. 3 for several values of time. 

A series of phase plots is given in Fig. 4, showing the expected behavior of the 
beams for this case, with saturation associated with trapping of the beams by the 
potential. The post-saturation behavior is expected to be somewhat inaccurate, since 
the electric field spectrum is artificially limited to a single mode. 

In the second case, an ion beam of negligible velocity speed, travels across a cold 
electron plasma with velocity 2)) and equal electron and ion densities are considgred~ 
The dispersion relation, 

gives unstable modes (Buneman instability) with frequencies w  N kui. In the long- 
wavelengths regime, corresponding to low frequencies, the growth rate is 
y N (m,/mi)“‘kvi. A computation was done in this regime with mJme = 36 
single mode of wave number k = 27c/L, corresponding to kvj = O.O6w,,, obtainer by 
setting vi = 9.55 X 10-3L~P,. The mesh size in this simulation is the same as that in 
the previous case, dx = L/32, the time step is dt = 2Sw,,, and 1088 particles of each 
species are used. An initial perturbation U: = lOWsLo,, is given to the ions and the 
resulting evolution of the electric field is shown in Fig. 5. The electric field, wh~~b is 
initially zero, increases rapidly out to t = 7200;~‘, after which it grows exp~ne~tial~~ 
at the rate of y = 1.17 X 10-30P,, in reasonable agreement with the theoretical value 
y= 1.0 x 10-3W P@’ 

B. Ion-Acoustic Waves and Instabilities 

Several simulations involving stable and unstable ion waves in a hot pla 
now described. Dispersion relations for such waves have been studied by F 
Gould [7]. For shifted Maxwellian distributions of the form 
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0 1200 2400 
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FIG. 5. Electric field as a function of time for a simulation of the electron-ion two-stream instability 
in the case of cold beams with m&n, = 3600, v, = 0, kvijwpe = 6 x lo-“, At = 2.50;’ and Ax = L/32. 

with s = e, i, the dispersion relation is 

Z’(c) + BZ’(t) = 2k2A:, , (21) 

where C= W/(@kVt& C= (@/@‘/‘(C - w), J+J = (Vdi - v,,)/(fi~,J, 0 = Tp/Ti, 
6 = me/mi, Z’ = ~Z/G’[ and Z(c) is the plasma dispersion function. Three cases, listed 
in Table II with their corresponding frequencies and growth rates from Eq. (21), have 
been considered. For all three cases, k& = 2 x lo-*, dt = 50;~’ giving kv,,, At = 
10-l Q 1. No iteration was used in the time step. The electrons and ions are 
initialized with a quiet start forming a set of omax beams, as described in Appendix C 
with 19,520 particles of each species. Only the mode k = 27r/L, where L is the length 
of the system, was allowed and the mesh size dx varied as explained in each case to 
avoid aliasing instabilities. Artificial mass ratios, mi/me = 100 and 900 were used to 
reduce the computation time. In all three cases, the_ wave is initialized by setting the 
ions with a velocity perturbation. 

The evolutions of the electron and ion velocity perturbations, U: and r.& for case 1 
are shown in Fig 6. Note that for short times t < ~OW;~‘, the electron velocity pertur- 
bation has a rapidly damped transient during which it adjusts its value from zero to a 

TABLE II 

Parameters Defining Ion-Acoustic Simulations of Section IV 
and Corresponding Theoretical Frequencies o and Growth Rates y  

Case 6 I9 W 4% YIqx 

1 Tk 100 0 2.02 x 1o-3 -1.24 x 1O-4 

2 & 2 0 3.44 x 10-j -1.0 x 1o-J 
3 A 10 V%h~ 2.16 x lo-” 5.43 x 1o-4 
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FIG. 6. Electron and ion velocity perturbations for a simulation of an ion-acoustic wave with 

mJme = 100, kl, = 0.02, T,/T, = 100, At = 5~0;~’ and Ax = L/256. The initial amplitude of the pertur- 
bation, corresponding to a trapping velocity vTe % es, is above the regime where electron Landau 
damping occurs and ion Landau damping is excluded since c, P uthi. All figures are labeled in terms of 
normalized units defined in Table I. 

value close to I&. This damping is the result of time averaging with the 3, $ a~gori$bm. 
The Iow-frequency osciliations of both u% and ~1 are ion-acoustic oscihations an$ 
have a period r = 3000~0;~’ close to the value 2z/w = 31100;~ predicted from 
Eq. (21). Since ai < T,, there is no ion Landau damping in the present case. For the 
perturbation considered in Fig. 6, the electric field arn~~~tude is 
E, = lo-“(m,/e) Loo,, from which the trapping velocity is vT = 8.0 x 10e4Eti,,, 
which is larger than the sound speed c, = 3.2 X 10-4Lw,,. Non-linear effects then 
prevent the occurrence of electron Landau damping, and the wave is undamped. The 
growing oscillations with period -~OCI.I;~‘, which are evident for t > 2OOOo;~‘, are the 
result of electron beaming instability due to the quiet start i~itiaiiza~~o~ ~4th 
cr max = 610 beams used here. 

The simulation results of Fig. 6 were obtained with AX = l/256 (i.e., 256 cetlsj. A 
simulation with the same parameters, but fewer cells, dx =L/32, had been carried 
out earlier. The evolution of the ion perturbation is identical in both s~rn~iatio~~, 
the electron perturbation with ,4x = L/32, shown in Fig. 7a, exhibits noisy high 
frequencies which were found to be the result of an aliasing instability. Note that the 
mesh size Ax = L/256 corresponds to A, N 0.8 Ax, a value for which a~~as~~~ 
instabilities are generally negligible [8]. However, the mesh size Ax = E/32, for w~~~~ 
ii D = 0.1 AX, is expected to give aliasing instabilities. The effect of time filtering on the 
noise level was investigated by repeating the computation of Fig. 7a (i.e., the case 
Ax = L/32) with At = @5w,-d, for which no significant time filtering occurs. In &is 
computation the noise level was approximately an order of magnitude larger 
analytical study of aliases, including the effect of finite At is given in Ap~e~~~~ 

The ion velocity perturbation for another simulation of this case, but i~~t~a~~ze~ 
with a smaller perturbation, is shown in Fig. 7b. The small mesh size, Ax = L/256 is 
used here, with the same number of particles (X9,520 for each species) but a larger 
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FIG. 7. (a) Electron velocity perturbation for the same parameters as for Fig. 6, but a larger mesh 
size Ax = L/32. High-frequency oscillations due to aliases are evident. (b) Ion velocity perturbation for 
the same parameters as for Fig. 6, but a lower initial amplitude for which electron Landau damping 
occurs. 

number of beams cr,,, = 1597 to reduce the beaming instability growth rate. This 
simulation shows electron Landau damping of the ion-acoustic wave at a rate 
y= -1.1 x 10-4w pe, which is only slightly smaller than the theoretical value given in 
Table II. 

The ion velocity perturbation vs time for case 2 is given in Fig. 8. This case is 
identical to case 1 (Fig. 6), except for the lower temperature ratio T,ITi = 2, which 
allows ion Landau damping to occur. The period z = 18000;~’ agrees with the 
theoretical value 240~ = 18260,’ from Table II, and the damping rate 
y = -9 x 1o-4w pe also agrees approximately with the theoretical result. This 
simulation was done with Ax = L/256 (i.e., 256 cells) and in simulation with 32 cells; 
U: exhibit high-frequency oscillations which do not damp with time, as in the case of 
Fig. 7a. This computation was initialized with 1597 beams (19,520 particles) of each 

FIG. 8. Ion velocity perturbation for a simulation of an ion-acoustic wave with q/m, = 100, 
kA, = 0.02, T,lTi = 2, dt = 5~;~’ and dx = L/32, for which ion Landau damping is observed. 
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FIG. 9. Electron velocity perturbations for a simulation of a two-stream instability with a hot 
electron beam and a cold ion beam, with mi/m,=900, ki, = 0.01, kvbi = fiuthe, T,lT;= IO, 
At = 5oP;’ and Ax = L/32. 

species. The oscillations with period -70~;’ which occur for t > 3000~0;~~ are again 
due to electron beaming instability, and are significantly increased when the number 
of beams, (T,,,, is decreased from 1597 to 610. 

The third simulation involves a two-stream instability similar to the case of Fig. 5, 
but with a hot electron beam. The evolution of the electron velocity perturbation is 
shown in Fig. 9 and the observed period and growth rate of the oscillations are in 
good agreement with the theoretical values of Table II. This computation was done 
with Ax = L/32 (i.e., 32 cells) and the aliasing instability did not appear to have 
serious consequences in this case, possibly because of the growth of the two-strea 
instability involved. 

C. Plasma Expamion into a Vacuum 

According to self-similar solutions, which assume charge neutrality, isothermal 
electrons and cold ions, the expansion of a plasma into vacuum pr 
rarefaction wave, which propagates into the plasma at the ion-acoustic 
Behind this wave, the density varies according to n = ‘2, exp[-(1 + x/cSt)J, where n, 
is the unperturbed density and x is measured from the location of the initial density 
discontinuity. The ions are accelerated outward according to the velocity ~r~~l~ 
vi = c, + x/1 and acquire large kinetic energies. However, analysis and ~orn~~ter 
simulations including electron dynamics [9, 101, show that the isothermal electron 
assumption is violated in the expansion region. While earlier particle simulations of 
this effect were limited to relatively short times, the present method allows 
expansion simulations, including electron dynamics, over sufficiently long times to 
observe large departures from the isothermal electron condition. 

Two examples, involving sharp and a diffuse plasma slabs are presented. In both 
examples, a system of length L = 10,240& is used and the plasma slab, of width 
256OJ,, is initialized in the center of the system, with 55 beams and ~7000 particles 
of each species. The electron thermal velocity is uthe = 0.98 x 10-4Lw,,, and a mass 
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FIG. 10. Density profile at several times for the expansion of a sharp plasma slab into vacuum with 
q/m, = 900, T,IT, = 10, half-width of slab, 1 = 1280;1,, At = 4~0,’ and Ax = 2Od,. All figures are 
labeled in terms of normalized units defined in Table I. 

ratio mi/m, = 900 is assumed, giving a sound speed c, = 3.3 X 10-6Lw,,. Thus, the 
rarefaction waves are expected to move inward from both edges of the slab a distance 
c, t,,, = 0.066L = 6751, during the total time, t,,, = 2 x 104w&‘, of the 
computations. The temperature ratio is T,/T, = 10, giving an ion thermal velocity 
V thi= 1.03 x 10-6Lop,. The mesh size is dx = L/5 12 = 20&, and the wave spectrum 
is cut off at k,,, = 32(2n/,!,) so that the shortest wavelength retained in the moments 
and electric field is ~min = L/32. A time step At = 40,’ was used, corresponding to 
kmaxvthe At 2: 0.08. Large and sharply peaked electric fields are generated in these 
simulations near the vacuum edge of the expansion region. These fields give local 
trapping frequencies mTe N 2 x 10-*0~~, corresponding to ~0~~ At N 0.08. This value 
also gives k,,, Te v At N 0.16 for the trapping velocity. Larger time steps caused 
numerical instabilities to occur and several tests showed that the allowable time step 
size was closely related to the maximum wave number, k,,,, retained in the electric 
field spectrum. No iterations were used in the computations displayed here and 
additional computations with one or two iterations showed no significant difference in 
the results and no improvement in the numerically unstable cases. 

The results for the sharp slab are shown in Figs. 10 thru 13. The density plots of 
Fig. 10 show rarefaction waves propagating into the plasma at the rate c,. The 

-1 

FIG. 11. Ion drift velocity profile at several times for the expansion of a sharp plasma slab into 
vacuum. 
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X X 

FIG. 12. Electron thermal velocity profiles at several times for the expansion of a sharp plasma slab 
into vacuum. 

density is not expected to drop in an exact exponential manner with respect to x in 
this case, because the initial profile (at t = 0) is not exactly dis~ontinuQus. The ion 
velocity profiles, shown in Fig. 11 display the expected linear increase in the 
expansion region, but no significant increase in the maximum velocity (-10-5Lti,,) 
occurs from t = lo4 &p,’ to 2 X lo4 w;~‘. The vertical line patterns in this plot near 
the velocity maxima are due to the small numbers of ions in these regions ca~~l~~ 
some cells to remain empty. The plots of Fig. 12 show clearly that the electron 
thermal velocity, uthe = ((v - (v)~)“}~“, does not remain constant or uniform but 
decreases with distance in the expansion regions. As the electron energy decreases, 
both as a function of time and as a function of distance from the slab center, the ions 
are no longer accelerated and drift outward at approximately constant velocity as 
seen in Fig. 12. Phase plots of electrons and ions at the end of the computation, 
t = 2 x 104w;=‘, are shown in Fig. 13. 

The results of a computation for a diffuse slab, with the same physical and 
numerical parameters are shown in Figs. 14 thru 16. The density profile, Fig 14, no 
longer shows evidence of a rarefaction wave and the density begins to dro 

>- 

FIG. 13. Electron and ion phase plots at t = 2 X i04w,’ for the expansion of a sharp plasma slab 
into vacuum. 
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FIG. 14. Density profile at several times for the expansion of a diffuse plasma slab into vacuum. 
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FIG. 1.5. Ion drift velocity profiles at sevaral times for the expansion of a diffuse plasma slab into 
vacuum. 
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FIG. 16. Electron and ion phase plots at t = 2 X 10“~;’ for the expansion of a diffuse plasma slab 
into vacuum. 
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immediately at the slab center. The ions are accelerated, as shown in Pig. 1% 
although at a somewhat slower rate than that for the sharp slab and the ion phase 
plot, Fig. 16, shows a larger ion thermal velocity (or velocity spread) in the 
expansion regions. 

Finally, the ripples in the ion mean velocity observed near the slab center in 
Figs. 1 I and 13, appear to be the result of non-linear steepening of ion-acoustic 
waves. The wavelength of these ripples is related to the maximum wave number k,,, 
and they do not occur in computations with Ti = T, in which ion Landau damping is 
present. A posssible remedy to this difftculty, which is related to the necessity of 
limiting the spatial spectrum to satisfy the condition kmax~the o’t < 1, will be 
discussed in the concluding section. 

v. CONCLUSIONS 

This paper has presented a one-dimensional particle simulation method, with 
filtering in time, allowing time steps dt > w&r in long-wavelength problems satisfying 
the condition kmaxaD < 1, where ape is the electron plasma frequency, iu is the 
Debye length and k,,, is the maximum wave number. The implicit determination of 
the electric field, required when At 2 CO&~, is achieved by using the continuity and 
momentum equations in conjunction with the Poisson equation, and iterating only the 

second moment tensor term which introduces corrections of order kmaxvtheAt< 1. 
This condition can be satisfied for mpe Al 9 1 for problems satisfying the condition 
kLD 4 1. Several examples, including two-stream instabilities, ion-acoustic oscillations 

and plasma expansion into vacuum have been described and the effect spatial aliases 
and multipie-beam instabilities are presented in the Appendices. 

The use of fluid moment equations, in conjunction with field equations to 
determine field quantities in a sufficiently implicit manner to yield numerical. stability 
with mpedt 4 1, has also been accomplished independently by Mason 13). While this 
paper demonstrates the validity of this concept, it presents only one of its implemen- 
tations, which may not be optimal, as perhaps is suggested by the rather cumbersome 
form of the resulting dispersion relation derived in Appendix B. In addition, a ~~~be~ 
of questions relating to the effect of the number of iterations on the accuracy rind to 
the relative merits of various choices of the weights A,, A I and A, have not been 
considered here, but can be resolved by generalization of this dispersion ~e~at~o~. 

Several possible generalizations involving apphcations to sheet-wavelength 
(k N a; ‘> ion-acoustic phenomena and the use of time filtering in fluid codes will now 
be outlined. 

The condition kuthe At < I represents a serious limitation on the method for 
problems involving low-frequency ion-acoustic perturbati~ns~ which tend to generate 
short-wavelength structures with k - 1;‘. However, this condition only applies TV 
electron dynamics, while the corresponding condition for ions, kvihi At Q 1, wodd 
aliow consideration of short wavelength in the range kX, - I. with ~~,dt 4 1. It 
should therefore be possible to divide the spatial spectrum of the electric fieid into 
two components. The long-wavelength component (kj < k,, where kcuthe i%t < B, 
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would be determined by the method of Section III and applied to both electrons and 
ions. The fine structure of the electric field, corresponding to k,,, > [kl > k,, where 
k,,, I)thi dt Q 1, would be determined by assuming that the electrons satisfy locally 
the Boltzmann equilibrium and charge-neutrality conditions, This yields the short- 
wavelength component of the electric field spectrum, E, = ik[n,(P,/n, - u:)]~, to be 
applied to the ions only. This electric field can be computed by transforming the 
quantity ni(Pe/ne - u,“) to k-space using fast Fourier transforms, computing E,, and 
transforming the resulting array back to x-space for application to the ions. In the 
limit kc-+ 0, the entire electric field would be determined from the electron 
equilibrium and charge-neutrality conditions, in a manner often used in analytical 
studies of ion-acoustic phenomena and in some hybrid simulations [ II], while the 
ions would be treated as particles. However, for finite values of k, < k,,,, the present 
method would treat the large-scale electron motion dynamically and assume only 
local equilibrium and charge neutrality. 

While this paper was devoted to particle simulations, time-filtering algorithms have 
possible applications to fluid codes. Since fluid equations involve a limited number of 
variables at a given grid point (density, velocity, field components, etc.) the implicit 
solution of these variables can be done by inversion of the corresponding matrix. A 
time-filtering algorithm would allow, for example, inclusion of electron dynamics at 
the time scale of MHD codes. High-frequency electron oscillations in dense regions 
would be filtered out, while low-frequency electron plasma oscillations or trapping 
oscillations in low-density regions would be retained. Similarly, low-frequency ion 
inertia effects could be retained in transport codes, allowing slow, large-scale plasma 
motions to be studied dynamically, while filtering out high-frequency MHD waves 
associated with shorter wavelengths. Note that in standard forward-of-center implicit 
differencing, the damping rate y of a mode with frequency CO,, is given by 
y/w0 cc wO dt. This can result in a substantial residual damping of low frequencies, 
while time-filtering algorithms using three time levels can give y/w, CC (CO,, dt)3, as 
shown in Appendix A, and therefore yield a much reduced damping of low fre- 
quencies. 

Before closing it may be noted that on the long time scales over which the present 
time-filtering method is applicable, collisions are expected to have significant effects. 
A one-dimensional particle code of this type, including collisions, has already been 
applied by Mason [12] to electron transport in laser produced plasmas, and 
generalizations of such electron transport codes to two dimensions and to magnetic 
interactions appear feasible. 

APPENDIX A: STABILITY AND ACCURACY 

The numerical stability and accuracy of the algorithm defined by Eq. (2) is 
examined in this appendix. For N = 1, the amplification factor < = exp(--iw dt) = 
f~‘“‘/“~ must satisfy the equation 

&- 1 + iu,dt(A,~+A,) = 0, (Al) 
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from which 5 = (1 - io, &A i)/(I + io, At A,), and numerical stability~ i.e., 151 < 1, 
requires A,>,A,. For A,=A,, the normalization condition, A O + A i = 1, yields 
A, =A, = f, the classical predictor-corrector is recovered, and there is no 
n~mericaliy induced damping at either high or low frequencies. To obtain damping at 
high frequencies requires setting A,, = 1 + E and A 1 = 4 - E with s > 8. 
Eq. (Al) in this case and expanding o/u), in powers of w, At yields the real 
frequency p = Re CO and damping y = -1m o, 

&= 1 + O(w,, At)*, 
m 

$ = 2&(0, At} + O(w, At)3. 
m 

Thus the damping approaches zero at low frequencies, but it decays only as the first 
power of the small parameter ~(f,df, which is not a satisfactory result for most 
applications. 

For N= 2, the amplification factor satisfies the equation 

~Z-~+i~,At(Ao~Z+A,~+A,)=O. CA21 

Solving this equation for w  and expanding with respect to ID, At now yields 

$ = 1 f O(w, At)*, 
m 

Y A; -A; - 3A; 
--= 
0, i 2 

- A,A, - 2A,A, (w, At) + 8(w, AtS3. 

To obtain a damping rate which decays as the cube of the small parameter o, At, ehe 
coefficient of the first power of w, At is set equal to zero. With the normalization 
condition A, + A, + A 2 = 1, this condition yields A, = $ - A,/2 and A, = f -A ,/IL 

To establish values of A, giving satisfactory damping of high frequencies, Eq. ( 
is solved for 5 in the limit w, At -+ 00, from which 

l47= 

= A, f (2x4, - 1)“’ 
$-A, 

for A,>,& 

for A,<;, 

where the largest root must be considered in the case A, > $. The corr~s~o~di~~ 
values of 151, plotted in Fig. 17, show that a minimum occurs for A 1 = & 
corresponding to an amplification factor r= 4. The weights corresponding to these 
“optimum” filtering algorithms are therefore A, = s7 A 1 = -&-, A, = &. 
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FIG. 17. Magnitude of the amplification factor, ](I as a function of the weight A, for weights A,, A, 
and A, satisfying the normalization condition A, + A, + A, = 1 and the low-frequency limit condition 
y/u& 2: O(w, A@. 

The algorithm considered in this paper corresponds to a sub-optimal case, A, = 4, 
A i = 0, A, = a for which r= i/G. This choice has the advantage of greater 
simplicity than the optimal case, and is safely remote from the rapidly increasing 
(and therefore unstable) branch corresponding to A, > i. 

Finally, the stability of the algorithm for finite values of w,dt must be verified. 
This is done by solving Eq. (A2) numerically. The results of this computation for 
both the j, $ algorithm and for the optimal algorithms (6, &, b) are shown in Fig. 1. 

APPENDIX B: DISPERSION RELATION FOR FINITE dt AND dx 

The particle-advancing algorithm and the implicit field computation of Sections II 
and III are analyzed in this appendix by deriving the dispersion relation for electron 
and ion waves, with discrete representations of time and space. This analysis allows a 
determination of the linear numerical stability and accuracy of the method for finite 
dt and dx, including the effect of aliases. 

Let g(x) denote a function of the position, such as density or electric field at a 
given time. These quantities are determined from the grid point values gj = g(jdx) 
by the interpolation rule 

g(x) = c gp(x -1 Ax), (Bl) 
j=l 

where j = l,..., J denotes the grid points, Ax = L/J is the mesh size, L is the length of 
the system and the spline s(x) defines the type of interpolation used. The (continuous) 
Fourier transform of g(x) is 



k 

with similar expressions for other spatially dependent quantities such as density, 
pressure, etc. Applying this formalism to Eqs. (5) and (6) for electrons and ions and 
to Eq. (15) yields 

x;,i - At - TR,,ivek,i, 

and 

Here, xk is a linear combination of field, density and pressure terms, 

3 At2 
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where D = 1 + (3 dt/4)‘(1 + S), 6 = m,/mj, < = exp(-io dt) is the amplification 
factor and P,, Q, and R, are resonance functions, 

and 
R = 3t;% + Prl;l 

s 
rr,- 1 ’ 

in which qs = exp(ikvz At) and s = e or i. 
The charge density of each species is computed by integrating the contributions of 

the particles in each cell, 

n; = 
i 

f,(v”)o[j Ax - (xi + vft t x:l’)] dx” duo 

= ni - 2 il&, exp[i(kj Ax - cot)] 1 f,x% duo, 
k 

@lOI 

where the weight fimcton a(x) determines the charge distribution in each particle. 
After Fourier transformation, Eq. (BIO) yields 

fikE - +il” ik,, Jakp 
p=-00 î  

fsxio duo, (‘311) 

where ok = fi a(x) exp(-ikx) dx/L is the Fourier transform of the weight function 
and kp = k + 27rpJ/L is the alias wave number of (integer) order p. The discrete 
Fourier transform solution of Poisson’ equation gives 

gk = + (6 - 17;) = f [(kakxk)e - (ka,x&], (B 12) 

and in this appendix the angular brackets denote integration over the velocity 
distribution f, and summation over aliases, i.e., ( gk)s = C, j gj&f, dv. In terms of the 
same notations, 

(ns usjk = J(ok(vk - ikv”xk)), , (B13) 

and 

Fi = -ikJ(uk v”(2vk - ikv”xk)). (B14) 

Substituting Eqs. (B6) and (B7) into Eq. (B12) and rearranging terms gives 

& c S,(k WkRP), + Ek 
At -= 

s LO 
k T + c G,(kW,RQ), 

s 1 = 0, (B15) 
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where tyk = J2s,u,; 6, = 1 and di = m,/m, = 6. Substituting Eqs. (B6) and (B7) into 
Eqs. (B 13) and (B14) and the resulting expressions into Eq. ( 

s 

-$f&t(3(+t-‘)r 6, (W,v” (2-F, = 0. 
s 

Setting the determinant of Eqs. (B15) and (B16) to zero yields the general d~s~ers~~~ 
relation for electrostatic electron and ion waves. Since this dispersion relation is 
rather complex, onIy two special cases are considered. 

1. Dispersion Relation in the Limit kvz At + 0 

This limit also corresponds to kvp At + 0; however, At, which is equal to wpe At in 
physical units, remains finite and this limit corresponds to the long-wavele~gtb case, 
k& 6 1. When the determinant of Eqs. (B 15) and (B 16) is computed to lowest order 
in kvz At and kvy At, considerable simplifications occur and the dispersion relation 
reduces to 

where <, = (5-l - 1)/i j k,\ At. Taking the limit w  At -+ 0 and ~e~iecting aliases, i.e., 
retaining only the term corresponding to p = 0 in the sum, Eq. (B1’7) reduces to the 
classical dispersion relation for ion waves in a hot plasma. 

To study the effect of aliases, on low-frequency modes, with IX N kc,, consider 
Maxwellian eletron and ion distribution functions. For the original wave (p = Cg), 
vthi < If&l & &he, where Vthe and Vthi are the electron and ion thermal velocities, an 
the pole at Ck gives Landau damping on the electrons and on the ions. The un 
stable aliases correspond to values of p for which k, = k + 2np/Ax gives 
and negative Landau damping results. Since ) kPj 9 k for reasonable 

kp < 
siz 

(Ax % 2z/k), j t;k,l < ( &I and negative electron Landau damping is negligible, since the 
corresponding pole occurs in the region where dfe/dv is negligible. negative ion 
Landau damping will also be negligible if l&J Q vthi, or (for o +.+ 
kAx < 2z~0-“~. Thus the worst cases correspond to cold ions for which 
B = 10, for example, aliases are negligible for kAx 4 ‘l??r/t/i(r which would be 
reasonably satisfied with 16 grid points per wavelength, for example. 

The condition Ax 5 &, required to avoid aliasing instability is related to hi 
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frequency modes with w  N kvthe, rather than the low-frequency mode with cu N- kc, 
considered here. This question is considered in the following special case. 

2. Single Electron Beam for Finite Values of kvz At 

The unstable interaction of an electron beam with the grid is now studied in a 
manner similar to the work of Birdsall and Maron [ 14 1, but including the implicit 
time step with finite At. Setting Ji = mdmi = 0 and f, = &v - 0:) in Eqs. (B 15) and 
(B16), and equating the determinant to zero yields the dispersion relation 

I[ ($)-‘-3<-‘I+ [,+k ($)-*][9+($)-*] 

+k ($-* [(3+5-l) (K-i?I) 

v” At 
- 3ik(35 + <-I) $-- 

( 

v” At 
2k-i-$-I )I 

3+<-‘-6ikv~t -(3<+r-‘) (JK-IL)=O, 1 
where I = (kW,RP), J= (kW,RQ), K = (W,P) and L = (W,Q). The code used in 
the examples of Section IV used an interpolation defined by g(x) = gj + (x -j Ax) gj’, 
where j is the grid point closest to x, and gj = ( gj+ r - gj- ,)/2 Ax. The interpolation 
yields Js, = (sin l3, + cos e,JfJ,) sin’ B,Jek, where 6, = kL/!J. Area weighting is used 
to determine the charge, current and kinetic energy densities, giving Jo, = (sin t9JBk)*, 
and we recall that W, = J2s,ok. 

For vz = 0, and excluding terms p # 0, Eq. (B18) reduces to 

which yields exactly the ideal frequencies and damping rates given in Fig. 1. For 
v,” # 0, Eq. (B18) must be solved numerically. When the aliases are neglected, i.e., 
retaining only the term corresponding to p = 0 in the sums defining I, J, K and L, 
there are five roots and two roots are introduced for each alias considered. For 
fP= 1.5915 x 10-3Lw pe, At = SW;,‘, Ax = L/32 and pmax = 0, there are five damped 
r:ots, the least damped root having a growth rate y = -4.43~~~ given in Table III. 
When the first pair of aliases is introduced by setting pmax = 1, this damped root is 
only slightly modified, but among the four new roots some are unstable and the most 
unstable has a growth rate y = 7.13 X 10P3w,,. For prnax = 3, another eight roots are 
added, but the original damped root and the most unstable root do not change 
significantly. Note that in the present case Ax = L/32 = 20&, where 
AD = uz//wP, = 1.59 15 X 10w3. Roots obtained with the same values of vz and At, but 
with Ax = L/256 2: 1.25L, and pmax = 3 are also given in Table III. For this smaller 
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TABLE III 

Least Damped and Most Unstable Roots for a Single Electron Beam 
Travelling across the Grid with vg = 1.59i5 x IO-‘LW,,~ 

At = SW,‘, Ax = L/32 and L/256 and Aliases of Orders p = 0, + I,..., ~tp,,, 

0 0.351 -4.43x lo-* 
1 0.353 -4.41x lo-’ 

0.333 7.13 x 19-3 
3 0.353 -4.47x 10-2 0.352 -4.44 x lo.-: 

0.333 7.13x 10-3 -0.037 3.74 x lo-’ 
3 0.347 -4.40 x 10-2 0.352 -4.44x lo-” 

Linear spline 0.310 5.01 x 10-j -0.057 3.28x iO-” 

value of Ax, the most unstable root now has a growth rate y = 3.73 X 10-50,, and 
this case may be considered stable. 

These analytical results, based on Eq. (B18) can be compared with &orres~o~di~~ 
simulation results from the code, shown in Fig. 18, in which the electron beam has 
been given an initial perturbation U: = 3 x 10P4Lw,. For V: = 0 and Ax = L/32, the 
velocity perturbation simply decays at the rate y = -O.O72w,, predicted by Fig. 1 for 
the 4, j algorithm with mpe At = 5. For vz = 1.5915 x low3 and Ax =E/32, he 
velocity perturbation first decays for t 2 100~0;~~ at approximately the rate of the 
least damped root for prnax = 0 in Table III. For t 2 1000;~“, uz grows at the rate 

10-G 
0 250 

t 

FIG. IX. Evolution of the electron velocity perturbation for a single electron beam with At = SW;, 
(a) v”, = 0, dx = L/32; (b) vz = 1.59 x lo-‘Lo pe, Ax = L/32; (c) 0: = 1.59 x 1W3Lwpe, Ax = L/256. 
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y = 0.007w pe, which agrees with the maximum growth rate given in Table III for this 
case. Finally, for 0: = 1.5915 X 10e3,but dx = L/256, only damping of the velocity 

perturbation is observed, at a rate y = -0.047, which again agrees with the least 
damped root for pmax = 0. 

Numerical solutions of Eq. (Big) were also computed for a linear spline s(x) = 
max()x]/dx, 0), which corresponds to the classical linear interpolation, rather than 
the “dipole” field computation used in the examples of Section IV. For this case there 
are no discontinuities in the particle force and Js, = (sin BJf?k)z. The results given in 
Table III for this spline show a somewhat improved performance, but do not modify 
the basic results obtained with the “dipole” field computation. 

The above growth rates correspond to the single-beam case and do not relate 
directly to distributions having a finite velocity spread for which smaller growth rates 
are expected. However, the computations of case B of Section IV show that, for 
dx + ;1,, aliases can cause significant noise, even for finite velocity spread and with 
the benefit of time filtering. Thus, methods to reduce grid effects [15] may be 
important in simulations of long-wavelength phenomena for which a mesh size 
dx = AD may not be feasible. 

APPENDIX C: ION BEAMING INSTABILITY 

The representation of particle distributions in terms of discrete beams is known to 
give rise to beaming instabilities, which have been previously studied in the case of 
electrons [ 161. However, the beaming instability associated with ions may also be 
significant over the long time scales considered here. This ion instability is studied by 
considering adiabatic electrons and ions governed by the Vlasov equation. Assuming 
charge neutrality for this electron-ion plasma yields the dispersion relation 

dv= 1, (Cl) 

where v is measured in units of the ion thermal velocity vthi, z = w/kvthi,&(v) is the 
ion equilibrium distribution normalized to unity, 0 = T,IT, and T, and Ti are the 
electron and ion temperatures, respectively. Solution of Eq. (Cl) for an analytic 

, 
OBeams ’ I ’ I 

0.4 - 0 Roots 0 

; 0 
.*a@* l l l .- (3.61 
-=Ty* ” - 

l 
-0.4 - 

I I , I 
0 1.0 2.0 ’ 3.5 

FIG. 19. Complex roots of characteristic equation of ion beaming instability with 21 beams and 
T, = T;. 
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TABLE IV 

Real Root and Most Unstable Root of the Ion Beaming Instability Dispersion Relation, Eq. (C3j 

B 

1 
10 
10 
10 

~msx 

21 
21 
34 
55 

Real root Most unstable root 

Rez Imz Rez Im z 

52.24 0 +1.74 0.15 

~3.62 0 il.84 0.28 
si3.64 0 12.07 0.25 

k3.66 0 zk2.21 0.22 

distribution yieids the classical results on ion-acoustic wave propagation an 
Landau damping of these waves on the ions. 

A discrete representation of the ion distribution function of the form 

is now considered. The velocities v, of the individual beams are chosen so that &, 
represents an approximation to a desired equilibrium distribution. In the case of a 
Maxwelliam distribution, for example, U, = v thi erff ‘(a/u,,,), where erf-1 denotes the 
inverse of the error function, erf(v) = J’” co exp(-v*/2) dv/@. substituting Eq. (G!) 
into Eq. (C 1) yields the dispersion relation 

=max 
x l 2y=o. 
o= 1 (2 - v2 

This new dispersion relation is algebraic and has 20,~~ roots, either real of 
complex conjugate, which are easily computed numerically. The beam velocities and 
roots corresponding to omax = 21 and 0 = 1 are shown in Fig. 19. There is a 
complex conjugate roots in each beam interval and two real roots beyond the 
velocity beams, which correspond to the ion-acoustic frequency. ‘in the discrete 
system, Landau damping occurs for a finite time only, as a result of supe 
the beam modes, while for long times the most unstable modes ultimately dorn~~~t~ 
the behavior of the system. Both the real roots and the most unstable roots are given 
in Table IV for several cases. For the plasma expansion problems of Section XV (55 
beams with 0= 10) the maximum growth rate of the ion beaming ins~a~~~i~y is 
y=0.22kv,,i= 1.4 x lo-‘w,,, which does not give a significant arn~ii~cat~o~ over 
the duration, t,,, = 2 x i04wpe1, of the computation. 
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